Copied to
clipboard

G = C42.674C23order 128 = 27

89th non-split extension by C42 of C23 acting via C23/C22=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.674C23, D4o(C4:C8), Q8o(C4:C8), C4:3(C8oD4), D4.8(C4:C4), C4oD4.58D4, (C4xD4).22C4, Q8.8(C4:C4), C4oD4.10Q8, (C4xQ8).21C4, C4.61(C22xQ8), C4:C8.353C22, (C2xC4).635C24, C42.202(C2xC4), (C2xC8).471C23, C4.187(C22xD4), C4:M4(2):31C2, C2.9(Q8oM4(2)), (C22xC8).428C22, C23.139(C22xC4), (C2xC42).753C22, C22.164(C23xC4), C42.6C22:27C2, (C22xC4).1503C23, C42:C2.284C22, (C2xM4(2)).338C22, C4oD4o(C4:C8), (C2xQ8)o(C4:C8), (C2xC4:C8):43C2, C4.20(C2xC4:C4), C2.9(C2xC8oD4), C22.2(C2xC4:C4), C4:C4.214(C2xC4), (C4xC4oD4).10C2, (C2xC8oD4).21C2, C2.21(C22xC4:C4), (C2xC4).313(C2xQ8), (C2xD4).247(C2xC4), (C2xC4).1080(C2xD4), C22:C4.65(C2xC4), (C2xQ8).224(C2xC4), (C22xC4).329(C2xC4), (C2xC4).249(C22xC4), (C2xC4oD4).339C22, C4:C8o(C2xC4oD4), SmallGroup(128,1638)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C42.674C23
C1C2C4C2xC4C22xC4C2xC4oD4C4xC4oD4 — C42.674C23
C1C22 — C42.674C23
C1C2xC4 — C42.674C23
C1C2C2C2xC4 — C42.674C23

Generators and relations for C42.674C23
 G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=b, ab=ba, cac-1=a-1, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=b2d >

Subgroups: 316 in 242 conjugacy classes, 174 normal (18 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C42, C42, C22:C4, C4:C4, C2xC8, C2xC8, M4(2), C22xC4, C2xD4, C2xQ8, C4oD4, C4:C8, C4:C8, C2xC42, C42:C2, C4xD4, C4xQ8, C22xC8, C2xM4(2), C8oD4, C2xC4oD4, C2xC4:C8, C4:M4(2), C42.6C22, C4xC4oD4, C2xC8oD4, C42.674C23
Quotients: C1, C2, C4, C22, C2xC4, D4, Q8, C23, C4:C4, C22xC4, C2xD4, C2xQ8, C24, C2xC4:C4, C8oD4, C23xC4, C22xD4, C22xQ8, C22xC4:C4, C2xC8oD4, Q8oM4(2), C42.674C23

Smallest permutation representation of C42.674C23
On 64 points
Generators in S64
(1 63 55 10)(2 11 56 64)(3 57 49 12)(4 13 50 58)(5 59 51 14)(6 15 52 60)(7 61 53 16)(8 9 54 62)(17 35 31 46)(18 47 32 36)(19 37 25 48)(20 41 26 38)(21 39 27 42)(22 43 28 40)(23 33 29 44)(24 45 30 34)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 43)(10 44)(11 45)(12 46)(13 47)(14 48)(15 41)(16 42)(25 51)(26 52)(27 53)(28 54)(29 55)(30 56)(31 49)(32 50)(33 63)(34 64)(35 57)(36 58)(37 59)(38 60)(39 61)(40 62)
(1 17)(2 18)(3 19)(4 20)(5 21)(6 22)(7 23)(8 24)(9 45)(10 46)(11 47)(12 48)(13 41)(14 42)(15 43)(16 44)(25 49)(26 50)(27 51)(28 52)(29 53)(30 54)(31 55)(32 56)(33 61)(34 62)(35 63)(36 64)(37 57)(38 58)(39 59)(40 60)

G:=sub<Sym(64)| (1,63,55,10)(2,11,56,64)(3,57,49,12)(4,13,50,58)(5,59,51,14)(6,15,52,60)(7,61,53,16)(8,9,54,62)(17,35,31,46)(18,47,32,36)(19,37,25,48)(20,41,26,38)(21,39,27,42)(22,43,28,40)(23,33,29,44)(24,45,30,34), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,41)(16,42)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,49)(32,50)(33,63)(34,64)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,45)(10,46)(11,47)(12,48)(13,41)(14,42)(15,43)(16,44)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(33,61)(34,62)(35,63)(36,64)(37,57)(38,58)(39,59)(40,60)>;

G:=Group( (1,63,55,10)(2,11,56,64)(3,57,49,12)(4,13,50,58)(5,59,51,14)(6,15,52,60)(7,61,53,16)(8,9,54,62)(17,35,31,46)(18,47,32,36)(19,37,25,48)(20,41,26,38)(21,39,27,42)(22,43,28,40)(23,33,29,44)(24,45,30,34), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,41)(16,42)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,49)(32,50)(33,63)(34,64)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,45)(10,46)(11,47)(12,48)(13,41)(14,42)(15,43)(16,44)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(33,61)(34,62)(35,63)(36,64)(37,57)(38,58)(39,59)(40,60) );

G=PermutationGroup([[(1,63,55,10),(2,11,56,64),(3,57,49,12),(4,13,50,58),(5,59,51,14),(6,15,52,60),(7,61,53,16),(8,9,54,62),(17,35,31,46),(18,47,32,36),(19,37,25,48),(20,41,26,38),(21,39,27,42),(22,43,28,40),(23,33,29,44),(24,45,30,34)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,43),(10,44),(11,45),(12,46),(13,47),(14,48),(15,41),(16,42),(25,51),(26,52),(27,53),(28,54),(29,55),(30,56),(31,49),(32,50),(33,63),(34,64),(35,57),(36,58),(37,59),(38,60),(39,61),(40,62)], [(1,17),(2,18),(3,19),(4,20),(5,21),(6,22),(7,23),(8,24),(9,45),(10,46),(11,47),(12,48),(13,41),(14,42),(15,43),(16,44),(25,49),(26,50),(27,51),(28,52),(29,53),(30,54),(31,55),(32,56),(33,61),(34,62),(35,63),(36,64),(37,57),(38,58),(39,59),(40,60)]])

50 conjugacy classes

class 1 2A2B2C2D···2I4A4B4C4D4E···4N4O···4T8A···8H8I···8T
order12222···244444···44···48···88···8
size11112···211112···24···42···24···4

50 irreducible representations

dim111111112224
type+++++++-
imageC1C2C2C2C2C2C4C4D4Q8C8oD4Q8oM4(2)
kernelC42.674C23C2xC4:C8C4:M4(2)C42.6C22C4xC4oD4C2xC8oD4C4xD4C4xQ8C4oD4C4oD4C4C2
# reps1336121244482

Matrix representation of C42.674C23 in GL4(F17) generated by

16000
01600
00130
0094
,
4000
0400
0010
0001
,
2000
0200
00116
00016
,
13900
4400
00160
00016
,
161500
0100
00160
00016
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,13,9,0,0,0,4],[4,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[2,0,0,0,0,2,0,0,0,0,1,0,0,0,16,16],[13,4,0,0,9,4,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,15,1,0,0,0,0,16,0,0,0,0,16] >;

C42.674C23 in GAP, Magma, Sage, TeX

C_4^2._{674}C_2^3
% in TeX

G:=Group("C4^2.674C2^3");
// GroupNames label

G:=SmallGroup(128,1638);
// by ID

G=gap.SmallGroup(128,1638);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,120,521,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=b,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=b^2*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<